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Atomic orbitals, which are described by the quantum numbersn, l, andm, can be depicted by an orbital
graph in which the vertices correspond to the lobes of the atomic orbitals and the edges to nodes between
adjacent lobes of opposite sign. The orbital graph for the unique orbital withm ) 0 for a given value ofl
consists of a linear graph withl + 1 vertices. The orbital graphs for the pair of orbitals withm) (l consist
of polygons with 2l vertices. The orbital graphs for the remaining 2(l - 1) orbitals with 0< |m| < l consist
of a stack ofl + 1 - |m| polygons each with|2m| vertices. For a given value ofl the atomic orbitals with
|m| ) k and|m′| ) l + 1 - k have the same numbers of lobes. Orbital graphs are useful for understanding
not only the shapes of atomic orbitals of high nodality but also the shapes of the molecular orbitals in molecules
approximated by a sphere such as the C60 fullerene.

1. Introduction

The shapes of the s, p, and d orbitals are very familiar to
many chemists and play a major role in understanding the
chemistry of both the main group and transition elements. The
shapes of the f orbitals are less familiar to chemists but have
been documented in the literature2-5 and become involved in
understanding some aspects of actinide chemistry.6

Atomic orbitals of higher nodality, namely g and h orbitals,
have received very little attention largely because their shapes7

are not significant in understanding the chemistry of any known
chemical elements or even potential future superheavy chemical
elements likely to have half-lives long enough to exhibit
observable chemistry. This paper presents a graph-theoretical
method for understanding the shapes of atomic orbitals of higher
nodality and related molecular orbitals described by analogous
spherical harmonics. Although such atomic orbitals are of
questionable chemical relevance, some molecular orbitals,
notably those of the spherical C60 fullerene, have the same
shapes and angular dependences as the higher nodality atomic
orbitals. Thus molecular orbitals of C60 corresponding to the 9
atomic g orbitals are filled molecular orbitals whereas those
corresponding to the eleven atomic h orbitals are the frontier
orbitals.

2. Background

The atomic orbital wave functionΨ(r,θ,φ) may be factored
into the product

in which the factorsR, Θ, andΦ are functions solely ofr, θ,
andφ, respectively, which are related to the coordinatesx, y,
andz by the following equations:

All of the symmetry properties of the wave function,Ψ, are
contained in its angular componentΘ(θ)‚Φ(φ) which is defined

by the spherical harmonicsYlm(θ,φ), i.e.

The spherical harmonicsYlm(θ,φ) are characterized by the
azimuthal quantum numberl, corresponding to the number of
nodes, and the magnetic quantum numberm, corresponding to
the tilt of the plane of orbital motion with respect to some
reference direction (typically thez axis).8

The angular dependence of the spherical harmonicsYlm(θ,φ)
can be expressed as a homogeneous polynomial f(x,y,z) by
converting the angular variablesθ and φ to the Cartesian
variablesx, y, andzusing eqs 2a, 2b, and 2c, respectively; this
polynomial is conveniently called theorbital polynomial. The
degree of the orbital polynomial equals the number of nodes,
i.e., 0, 1, 2, 3, 4, and 5 for s, p, d, f, g, and h orbitals,
respectively, and its maximum exponent ofz is equal tol -
|m|. In some cases the expressions for the orbital polynomial
in the tables are simplified by using the variabler and the
relationshipr2 ) x2 - y2.
A convenient way of depicting the shape of an orbital,

particularly complicated orbitals with large numbers of lobes,
is by the use of an orbital graph.9 In such an orbital graph the
vertices correspond to the lobes of the atomic orbitals and the
edges to nodes between adjacent lobes of opposite sign. Such
an orbital graph is necessarily a bipartite graph in which each
vertex is labeled with the sign of the corresponding lobe and
only vertices of opposite sign can be connected by an edge.
Table 1 illustrates some of the important properties of s, p,

and d orbitals. Similarly Table 2 lists some of the important
properties of two different sets of seven f orbitals. The cubic
set of f orbitals is used for structures of sufficiently high
symmetry (e.g.,Oh and Ih) to have sets of triply degenerate f
orbitals, whereas the general set of f orbitals is used for
structures of lower symmetry without sets of f orbitals having
degeneracies 3 or higher. Tables 3 and 4 list some of the
important properties of the sets of 9 g orbitals, and 11 h orbitals,
respectively, which correspond to the general set of f orbitals
(Table 2). For clarity only the general form of the orbital graphs
are shown in the tables with no attempt being made to align
them relative to the Cartesian coordinatesx, y, andz. However,
Figure 1 shows the orientations of the orbital graphs of the five
g orbital types relative to thez axis.X Abstract published inAdVance ACS Abstracts,June 1, 1997.

Ψ(r,θ,φ) ) R(r)‚Θ(θ)‚Φ(φ) (1)

x) r sinθ cosφ (2a)

y) r sinθ sinφ (2b)

z) r cosθ (2c)

Θ(θ)‚Φ(φ) ) Ylm (θ,φ) (3)
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Observations

The orbital graph for the unique orbital withm ) 0 for a
given value ofl consists of a linear graph withl + 1 vertices
oriented along thez axis. The orbital graphs for the pair of
orbitals withm) (l (i.e., |m| ) l) are a pair of polygons with
2l vertices (i.e., C2l graphs) located in thexyplane. The orbital
graphs for the remaining 2(l - 1) orbitals with 0< |m| < l
consist of stacks ofl+1-|m| polygons each with 2|m| vertices.

These polygons are the orbital graphs for the corresponding
atomic orbitals with|m| ) l′ wherel′ < l. In this connection
a two-vertex line segment such as the orbital graphs of thep
orbitals is considered to be a “polygon” with two vertices, which
has been called adigon. A stack of two polygons is conven-
tionally called a polygonal prism, a stack of three polygons is
called a double polygonal prism, etc. A square prism is a cube.
A stack of two digons becomes a square (i.e., a “digonal prism”),
whereas a stack of three digons becomes a double square, (i.e.,
a “double digonal prism”), etc. All orbital graphs generated
by this procedure are necessarily bipartite graphs; i.e., their
vertices can be labeled with plus or minus signs so that every
edge connects a plus vertex to a minus vertex. Furthermore,
every vertex of an orbital graph for orbitals withm* 0 is part
of at least one cycle of even length (i.e., a square, hexagon,
octagon, etc.).
The numbers of lobes in atomic orbitals with|m| * 0 for a

given value ofl follow a pattern that can be seen from the
numbers of vertices of the corresponding orbital graphs. Thus
the atomic orbitals where|m| ) k and |m′| ) l + 1 - k (0 <
ke l) for a given value ofl have the same numbers of lobes so
that these values of|m| can be regarded as complementary and
the corresponding sets of atomic orbitals can be designated as
complementary orbitals. The simplest examples of comple-
mentary orbitals are the d(xy) and d(x2-y2) orbitals with|m| )
2 and the d(xz) and d(xy) orbitals with|m′| ) l + 1 - 2 ) 2 +
1- 2) 1, which all have four lobes (Table 1). In this case all
of the orbital graphs have the same topologies, namely squares.
In more complicated cases the orbital graphs for complementary
orbitals still have the same numbers of vertices but different
topologies. Thus, in the set of generalf orbitals, the f(x(x2-
3y2)) and f(y(3x2-y2)) orbitals with|m| ) 3 are complementary
to the f(x(5z2-r2)) and f(y(5z2-r2)) orbitals with |m′| ) l + 1
- 3 ) 3 + 1 - 3 ) 1 and all four of these f orbitals have six
lobes. However, the orbital graphs of the f orbitals with|m| )
3 are hexagons whereas those of the f orbitals with|m| ) 1 are
double squares (Table 2).

TABLE 1: Properties of s, p, and d Atomic Orbitals

TABLE 2: Properties of the f Atomic Orbitals

TABLE 3: Properties of the g Atomic Orbitals

TABLE 4: Properties of the h Atomic Orbitals
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The reason for the numbers of vertices in orbital graphs being
equal for complementary orbitals can be seen from the way that
orbital graphs are constructed. Thus the orbital graphs for
orbitals with 0< |m| < l consist of stacks ofl + 1 - |m|
polygons each with 2|m| vertices. If |m| ) k, the number of
vertices in this graph can be expressed by the following
equations whereV is the total number of vertices in the orbital
graph,p is the number of vertices in the polygons being stacked,
andh is the height of the stack (i.e., the number of polygons in
the stack so thath ) 2 for prisms,h ) 3 for double prisms,
etc.):

However, for the complementary set of atomic orbitalsk′ ) l
+ 1 - k so that

andV ) V′.
The form of the orbital polynomial can be related to the shape

of the corresponding atomic orbital and its orbital graph. Thus
for atomic orbitals with 0< |m| < l, the orbital graph consists
of a stack of the polygonal orbital graphs of the corresponding
atomic orbital with |m| ) l′ where l′ < l. Thus Figure 2
considers the f(xyz) and f(z(x2-y2)) orbitals (Table 2) withl )
3 and|m| ) 2, whose orbital graphs are cubes. These cubes
are derived by stacking two squares corresponding to the orbital
graphs of the d(xy) and d(x2-y2) orbitals withl ) 2 and|m| )

2. The corresponding orbital polynomials of the d(xy) and d(x2-
y2) orbitals are seen to be factors of the orbital polynomials of
the f(xyz) and f(z(x2-y2)) orbitals (Figure 2).

Possible Applications

The g and h atomic orbitals, although they have intriguing
shapes, do not appear to be relevant to the chemistry of any
element expected to be synthesized and isolated. However,
orbitals shaped like g and h orbitals can appear in species
approximated by spherical symmetry leading tomolecular
orbitals resembling spherical harmonics. The most interesting
case is the C60 truncated icosahedral fullerene (Figure 3) which
can be approximated by a sphere. The filled molecular orbitals
of C60 include not only one S (ag), three P (t1u), five D (hg),
and seven F (t2u+ gu) orbitals but also nine G (hg + gg) orbitals.
Furthermore, the nine G orbitals are calculated10 to be degenerate
in an ideal truncated icosahedron corresponding to the C60

Figure 1. Orbital graphs of the five types of the nineg orbitals oriented relative to thez axis showing the effect of changes in the magnetic
quantum number|m|.

Figure 2. Relationship between thed(xy) andd(x2-y2) orbitals (l ) 2
amd|m| ) 2) with square orbital graphs and thef(xyz) andf(z(x2-y2))
orbitals (l ) 3 and|m| ) 2) with cube orbital graphs.

V ) ph) (2k)(l + 1- k) ) 2kl - 2k2 + 2k (4)

V′ ) p′h′ ) (2[l + 1- k])(l + 1-[l + 1- k])

) 2(l + 1- k)k) 2kl - 2k2 + 2k (5)

Figure 3. Calculated molecular orbitals energies for C60 related to the
spherical harmonics with 0e l e 6 designated as S, P, D, F, G, H,
and I molecular orbitals, respectively. The 60 electrons for neutral C60

are indicated byb. The additional 3 electrons of C603- and the additional
6 electrons of C606- in the triply degenerate t1u molecular orbital of the
11-orbital H frontier orbital manifold are indicated by cloverleaf and
by the cloverleaf+ spade symbols, respectively.
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structure. Up to this point the parities of the C60 molecular
orbitals alternate in the sequence Sf P f D f F f G as

expected corresponding to the parity of the number of nodes.
The frontier orbitals of C60 are the 11 H orbitals with up to 8
of the H orbitals being filled in the hexaanion C606- (Figure 3).
Higher spherical fullerenes,11-14 are likely to provide examples
of higher nodality molecular orbitals than even the H orbitals
of C60. Thus Figure 4 provides an illustration of the lowest
lying higher nodality molecular orbitals up toL ) 11 calcu-
lated12 for the hypothetical large spherical fullerene C540 of
icosahedral symmetry belonging to the Cn, n ) 60(ν + 1)2

family (n) 2) of giant fullerenes.13,14 Note how the molecular
orbitals in Figure 4 are bunched according to their energy
parameters in groups of 2L + 1 molecular orbitals. Further
details on the relationship of the molecular orbital patterns of
the C60n2 fullerenes to spherical harmonics are presented
elsewhere.15
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Figure 4. Lowest lying molecular orbitals calculated12 for C540plotted
according to their energy parameters showing orbitals up to those with
11 nodes (designated as N orbitals in an extension of the S, P, D, F,...
designations).
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