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Atomic orbitals, which are described by the quantum numipeds andm, can be depicted by an orbital

graph in which the vertices correspond to the lobes of the atomic orbitals and the edges to nodes between

adjacent lobes of opposite sign. The orbital graph for the unique orbitalnwithO for a given value of

consists of a linear graph with+ 1 vertices. The orbital graphs for the pair of orbitals with= &I consist
of polygons with 2 vertices. The orbital graphs for the remaining) 2(1) orbitals with 0< |m| < | consist
of a stack ofl + 1 — |m| polygons each with2m| vertices. For a given value d¢fthe atomic orbitals with
Im = kand|m'| =1 + 1 — k have the same numbers of lobes. Orbital graphs are useful for understanding

not only the shapes of atomic orbitals of high nodality but also the shapes of the molecular orbitals in molecules

approximated by a sphere such as the fGllerene.

1. Introduction by the spherical harmonicém(0,¢), i.e.

The shapes of the s, p, and d orbitals are very familiar to
many chemists and play a major role in understanding the O(0)-®(4) = Y, (6:9) ®3)
chemistry of both the main group and transition elements. The
shapes of the f orbitals are less familiar to chemists but have The spherical harmonic¥n(6,¢) are characterized by the
been documented in the literatére and become involved in  azimuthal quantum numbér corresponding to the number of
understanding some aspects of actinide chemfstry. nodes, and the magnetic quantum numibgecorresponding to

Atomic orbitals of higher nodality, namely g and h orbitals, the tilt of the plane of orbital motion with respect to some
have received very little attention largely because their sfapes reference direction (typically theaxis)8
are not significant in understanding the chemistry of any known  The angular dependence of the spherical harmoviigé,¢)
chemical elements or even potential future superheavy chemicalcan be expressed as a homogeneous polynomialZi( by
elements likely to have half-lives long enough to exhibit converting the angular variable® and ¢ to the Cartesian
observable chemistry. This paper presents a graph-theoreticalvariablesx, y, andz using egs 2a, 2b, and 2c, respectively; this
method for understanding the shapes of atomic orbitals of higher polynomial is conveniently called trarbital polynomial The
nodality and related molecular orbitals described by analogousdegree of the orbital polynomial equals the number of nodes,
spherical harmonics. Although such atomic orbitals are of i.e., 0, 1, 2, 3, 4, and 5 for s, p, d, f, g, and h orbitals,
questionable chemical relevance, some molecular orbitals,respectively, and its maximum exponentzfs equal tol —
notably those of the sphericalg&fullerene, have the same |m|. In some cases the expressions for the orbital polynomial
shapes and angular dependences as the higher nodality atomim the tables are simplified by using the variableand the
orbitals. Thus molecular orbitals ofsgcorresponding tothe 9 relationshipr? = x2 — y2.
atomic g orbitals are filled molecular orbitals whereas those A convenient way of depicting the shape of an orbital,
corresponding to the eleven atomic h orbitals are the frontier particularly complicated orbitals with large numbers of lobes,

orbitals. is by the use of an orbital grahln such an orbital graph the
vertices correspond to the lobes of the atomic orbitals and the
2. Background edges to nodes between adjacent lobes of opposite sign. Such

an orbital graph is necessarily a bipartite graph in which each
vertex is labeled with the sign of the corresponding lobe and
only vertices of opposite sign can be connected by an edge.

The atomic orbital wave functio¥(r,0,¢) may be factored
into the product

W(r,0,0) = R(r)-0(6)-®(¢) (1) Table 1 illustrates some of the important properties of s, p,
and d orbitals. Similarly Table 2 lists some of the important
in which the factorR, ©, and® are functions solely of, 6, properties of two different sets of seven f orbitals. The cubic
and ¢, respectively, which are related to the coordinatey, set of f orbitals is used for structures of sufficiently high
andz by the following equations: symmetry (e.g.On andly) to have sets of triply degenerate f
. orbitals, whereas the general set of f orbitals is used for
X=rsin6 cos¢ (2a) structures of lower symmetry without sets of f orbitals having
. . degeneracies 3 or higher. Tables 3 and 4 list some of the
y=rsingsing (2b) important properties of the set6®g orbitals, and 11 h orbitals,
7=r cosf (2¢) respectively, which correspond to the general set of f orbitals

(Table 2). For clarity only the general form of the orbital graphs

All of the symmetry properties of the wave functio®, are are shown in the tables with no attempt being made to align

contained in its angular compone®{6)-®(¢) which is defined them relative to the Cartesian coordinateg, andz. However,
Figure 1 shows the orientations of the orbital graphs of the five
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TABLE 1: Properties of s, p, and d Atomic Orbitals

Appearance and Orbital
Type Im! Nodes Polynomial Angular Function Graph Shape
5 0 0 independent spherically symmetrical ~ point
of 8, ¢
p 1 1 x sin B cos ¢
p 1 1 ¥y + linear
» 0 1 . sin &sin ¢ |
cos 8 -
d 2 2 *y sin2 @'sin 2¢
d 2 2 x2—y? sin2 O cos 2¢ e
d 1 2 Xz sin @ cos® cos ¢ | | Square
d 1 2 yz sin @ cos 8sin ¢ -+
40 3 2272 (3 cos26 — 1) T
(abbreviated T linear
as z2) +
TABLE 2: Properties of the f Atomic Orbitals
Iml Lobes Shape Orbital Graph General Set Cubic Set
3 6 Hexagon +——\ x(x2-3y2) none
—/ + y(3x2-y2)
\_/
2 8 Cube T xyz xyz
H 2(x2-y?2) x(z2-y?)
| +—| y(22-x?)
/ /
-+ 2(x2-y2)
1 6 Double +— x(522-r2) none
Square l | )(522-12
| — y(522-r2)
Il
0 4 Linear — g 2(522-12) X3

TABLE 3: Properties of the g Atomic Orbitals

Iml Lobes Shape Orbital Graph Polynomial
4 8 Octagon /+——\ X4+yd-6x2y2
T *l' xy(x2-y?)
N/
3 12 Hex:?gonal +/——+\_ xz(x2-3y2)
Prism }__L/ yz(y2-3x2)
_/‘7_ N
N
2 12 Double +—/— (2-y2)(722-r2)
Cube _{/_ \+ xy(122-r2)
+7\.r7\—_
~—4
1 8 Triple — y(723 =32r2)
Square | ' | I x(723-32r2)
—_—
0 5 Linear g —— 4 3524302212434
Observations

The orbital graph for the unique orbital witih = 0 for a
given value ofl consists of a linear graph with+ 1 vertices
oriented along the axis. The orbital graphs for the pair of
orbitals withm = =l (i.e., |m| = |) are a pair of polygons with
2l vertices (i.e., @ graphs) located in they plane. The orbital
graphs for the remaining R 1) orbitals with 0< |m| < |
consist of stacks df+1—|m| polygons each with |2 vertices.
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TABLE 4: Properties of the h Atomic Orbitals

Iml Lobes Shape Orbital Graph Polynomial
5 10 Decagon /_—+~_ X5-10x3y2 + Sxy*
-’|. \-’o- ¥5 = 10x2y3 + Sxdy
N 2
+_ -+
4 16 Octagonal - —+\_ xyz(x2-y2)
Prism /A\/ / /A 2(xt+ys—6x2y2)
‘//.‘_d-_—_/—\‘,//
"’\_/_+/_
3 18 Double +/——+\_ xX(x2-3y2)(922-r2)
Hexagonal / \.___7’ y(y2-3x2)(922-r2)
Prism _’L L\+
A /
|5
+\__+/_
2 16 Triple Cube —— xv2(322-r2)
/ vz(3:
_i/_—“‘—\i- 2 (x2-y2)(322-r2)
V1 \/| FRIE
I\
——=ay
a
1 10 Quadruple +—-|—+—-|—+ x(2124-1422r2474)
Square _|_+_l_+_l V(2124 14222 4 14)
0 6 Linear b — e 2(6324-702224157%)

These polygons are the orbital graphs for the corresponding
atomic orbitals withim| = I' wherel' < |. In this connection

a two-vertex line segment such as the orbital graphs opthe
orbitals is considered to be a “polygon” with two vertices, which
has been called digon A stack of two polygons is conven-
tionally called a polygonal prism, a stack of three polygons is
called a double polygonal prism, etc. A square prism is a cube.
A stack of two digons becomes a square (i.e., a “digonal prism”),
whereas a stack of three digons becomes a double square, (i.e.,
a “double digonal prism”), etc. All orbital graphs generated
by this procedure are necessarily bipartite graphs; i.e., their
vertices can be labeled with plus or minus signs so that every
edge connects a plus vertex to a minus vertex. Furthermore,
every vertex of an orbital graph for orbitals with= 0 is part

of at least one cycle of even length (i.e., a square, hexagon,
octagon, etc.).

The numbers of lobes in atomic orbitals witih| = 0 for a
given value ofl follow a pattern that can be seen from the
numbers of vertices of the corresponding orbital graphs. Thus
the atomic orbitals wherem| = kand|m'| =1+ 1 — k(0 <
k < 1) for a given value of have the same numbers of lobes so
that these values ¢im| can be regarded as complementary and
the corresponding sets of atomic orbitals can be designated as
complementary orbitals. The simplest examples of comple-
mentary orbitals are the xif) and d&?—y?) orbitals withjm| =
2 and the &2 and dky) orbitals withim'|=1+1—-2=2+
1 - 2=1, which all have four lobes (Table 1). In this case all
of the orbital graphs have the same topologies, namely squares.
In more complicated cases the orbital graphs for complementary
orbitals still have the same numbers of vertices but different
topologies. Thus, in the set of genefabrbitals, the fk(x2—
3y?)) and fy(3x2—y?)) orbitals with|m| = 3 are complementary
to the fx(522—r?)) and ff/(522—r?)) orbitals with|m'| =1+ 1
—3=3+1-3=1and all four of these f orbitals have six
lobes. However, the orbital graphs of the f orbitals witlh =
3 are hexagons whereas those of the f orbitals ywifh—= 1 are
double squares (Table 2).
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Figure 1. Orbital graphs of the five types of the nimporbitals oriented relative to the axis showing the effect of changes in the magnetic
guantum numbejm|.
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Figure 2. Relationship between thixy) andd(x>—y?) orbitals { = 2 G | === af.
amd|m| = 2) with square orbital graphs and tf(gy2 andf(z(x*—y?)) ¢
orbitals { = 3 and|m| = 2) with cube orbital graphs. LI I LI L e C
F e oo ee v 60
L . . - t
The reason for the numbers of vertices in orbital graphs being 2
equal for complementary orbitals can be seen fromthe way that D |[— —— ~— ==~ 2= h, «Cgo>™
orbital graphs are constructed. Thus the orbital graphs for p ce e ee
orbitals with 0 < |m| < | consist of stacks of + 1 — |m| s ELENPS " Cenb-
polygons each with || vertices. Ifjm| = k, the number of *+~60

vertices in this graph can be expressed by the following _. . )
equatiorjs where is the total_number of vertices in Fhe orbital ;')%lgrei c:;l Eﬁ;ﬂﬁ;ﬁg vn\fi?rlleéu:a;Oébgzlssi‘genr;re%e:;?(F;I,atD?dFt’O(t;h’eH’
graph,pis the number of vertices in the polygons being stacked, and | molecular orbitals, respectively. The 60 electrons for neual C
andh is the height of the stack (i.e., the number of polygons in are indicated b®. The additional 3 electrons ofs&" and the additional
the stack so thah = 2 for prisms,h = 3 for double prisms, 6 electrons of &°~ in the triply degeneratatmolecular orbital of the
etc.): 11-orbital H frontier orbital manifold are indicated by cloverleaf and
by the cloverleaft spade symbols, respectively.
u=ph=(2k)(|+1—k)=2k|—2k2+2k (4) . . .
2. The corresponding orbital polynomials of theyj@nd d&*—

However, for the complementary set of atomic orbitéls= | y?) orbitals are seen to be factors of the orbital polynomials of
+ 1 — k so that the f(xy2 and f@(x*—y?)) orbitals (Figure 2).
v=ph =@+ 1-K)(I+1-[1+1-K) Possible Applications
=2(+1— Kk=2kl — 2i& + 2k (5) The g and h atomic orbitals, although they have intriguing
shapes, do not appear to be relevant to the chemistry of any
andv = v'. element expected to be synthesized and isolated. However,

The form of the orbital polynomial can be related to the shape orbitals shaped like g and h orbitals can appear in species
of the corresponding atomic orbital and its orbital graph. Thus approximated by spherical symmetry leading rtwlecular
for atomic orbitals with O< |m| < I, the orbital graph consists  orbitals resembling spherical harmonics. The most interesting
of a stack of the polygonal orbital graphs of the corresponding case is the g truncated icosahedral fullerene (Figure 3) which
atomic orbital with|m| = I’ wherel' < |I. Thus Figure 2 can be approximated by a sphere. The filled molecular orbitals
considers the y2 and f@z(x2—y?)) orbitals (Table 2) witH = of Cgo include not only one S (@ three P ({), five D (hy),
3 and|m| = 2, whose orbital graphs are cubes. These cubes and seven F { + gy) orbitals but also nine G ht gg) orbitals.
are derived by stacking two squares corresponding to the orbital Furthermore, the nine G orbitals are calculdi¢o be degenerate
graphs of the dy) and d&?—y?) orbitals withl = 2 and|m| = in an ideal truncated icosahedron corresponding to thg C
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Figure 4. Lowest lying molecular orbitals calculatédor Cs4o plotted
according to their energy parameters showing orbitals up to those with
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expected corresponding to the parity of the number of nodes.
The frontier orbitals of g are the 11 H orbitals with up to 8
of the H orbitals being filled in the hexaaniord™ (Figure 3).
Higher spherical fullerenéd; 14 are likely to provide examples

of higher nodality molecular orbitals than even the H orbitals
of Ceo. Thus Figure 4 provides an illustration of the lowest
lying higher nodality molecular orbitals up to = 11 calcu-
lated? for the hypothetical large spherical fullerengs&of
icosahedral symmetry belonging to thg, @ = 60( + 1)?
family (n = 2) of giant fullerene$31* Note how the molecular
orbitals in Figure 4 are bunched according to their energy
parameters in groups ofL2+ 1 molecular orbitals. Further
details on the relationship of the molecular orbital patterns of
the G fullerenes to spherical harmonics are presented
elsewheréd?
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